If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+14t=23
We move all terms to the left:
4.9t^2+14t-(23)=0
a = 4.9; b = 14; c = -23;
Δ = b2-4ac
Δ = 142-4·4.9·(-23)
Δ = 646.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-\sqrt{646.8}}{2*4.9}=\frac{-14-\sqrt{646.8}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+\sqrt{646.8}}{2*4.9}=\frac{-14+\sqrt{646.8}}{9.8} $
| -7(8-6p)=-392 | | 12-2m-8m=-7m+8+1 | | O=8z-(3-z) | | 21b-15+6=32b-64 | | -82=-2(1-5b) | | 8+2=2+x | | 6(2a+1)-3(5a+2)=0 | | n8+10=15n | | 8m+6m-13=72 | | 115=2(5-7n)-n | | 4.9t^2+14t-23=0 | | Y=4+30x | | -6m2=-150 | | -(5x+3)=17 | | 16x4+-81x4=0 | | -3(-4-6y)+7(-7+5)=-78 | | 5=1b+9b | | X/2+2x+3x+x=90 | | 38k+7k=5+40k | | 9x+13=80 | | 2/3x-2x=-4 | | 180(n-2)=1480 | | X=3-2y/(5+11y) | | 3/7=m/91 | | w/5+7/20=w/4 | | (n-2)180=1480 | | 6(a+5)-3a=-2(a-15)+5a | | 5m+13=23 | | v/4=v/3+2 | | (2x^2)+7=19 | | 4(a-6)=8-(4a-24) | | v/4-v/14=5/4 |